\(\int \frac {(3+3 \sin (e+f x))^m}{(c-c \sin (e+f x))^3} \, dx\) [410]

   Optimal result
   Rubi [A] (verified)
   Mathematica [F]
   Maple [F]
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 83 \[ \int \frac {(3+3 \sin (e+f x))^m}{(c-c \sin (e+f x))^3} \, dx=\frac {2^{\frac {1}{2}+m} \operatorname {Hypergeometric2F1}\left (-\frac {5}{2},\frac {1}{2}-m,-\frac {3}{2},\frac {1}{2} (1-\sin (e+f x))\right ) \sec ^5(e+f x) (1+\sin (e+f x))^{\frac {1}{2}-m} (3+3 \sin (e+f x))^{2+m}}{45 c^3 f} \]

[Out]

1/5*2^(1/2+m)*hypergeom([-5/2, 1/2-m],[-3/2],1/2-1/2*sin(f*x+e))*sec(f*x+e)^5*(1+sin(f*x+e))^(1/2-m)*(a+a*sin(
f*x+e))^(2+m)/a^2/c^3/f

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.04, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {2815, 2768, 72, 71} \[ \int \frac {(3+3 \sin (e+f x))^m}{(c-c \sin (e+f x))^3} \, dx=\frac {2^{m+\frac {1}{2}} \sec ^5(e+f x) (\sin (e+f x)+1)^{\frac {1}{2}-m} (a \sin (e+f x)+a)^{m+2} \operatorname {Hypergeometric2F1}\left (-\frac {5}{2},\frac {1}{2}-m,-\frac {3}{2},\frac {1}{2} (1-\sin (e+f x))\right )}{5 a^2 c^3 f} \]

[In]

Int[(a + a*Sin[e + f*x])^m/(c - c*Sin[e + f*x])^3,x]

[Out]

(2^(1/2 + m)*Hypergeometric2F1[-5/2, 1/2 - m, -3/2, (1 - Sin[e + f*x])/2]*Sec[e + f*x]^5*(1 + Sin[e + f*x])^(1
/2 - m)*(a + a*Sin[e + f*x])^(2 + m))/(5*a^2*c^3*f)

Rule 71

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c
 - a*d))^n))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-d/(b*c - a*d), 0]))

Rule 72

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n]), Int[(a + b*x)^m*Simp[b*(c/(b*c - a*d)) + b*d*(x/(b*c -
a*d)), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 2768

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[a^2*(
(g*Cos[e + f*x])^(p + 1)/(f*g*(a + b*Sin[e + f*x])^((p + 1)/2)*(a - b*Sin[e + f*x])^((p + 1)/2))), Subst[Int[(
a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&
 EqQ[a^2 - b^2, 0] &&  !IntegerQ[m]

Rule 2815

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0,
 n, m] || LtQ[m, n, 0]))

Rubi steps \begin{align*} \text {integral}& = \frac {\int \sec ^6(e+f x) (a+a \sin (e+f x))^{3+m} \, dx}{a^3 c^3} \\ & = \frac {\left (\sec ^5(e+f x) (a-a \sin (e+f x))^{5/2} (a+a \sin (e+f x))^{5/2}\right ) \text {Subst}\left (\int \frac {(a+a x)^{-\frac {1}{2}+m}}{(a-a x)^{7/2}} \, dx,x,\sin (e+f x)\right )}{a c^3 f} \\ & = \frac {\left (2^{-\frac {1}{2}+m} \sec ^5(e+f x) (a-a \sin (e+f x))^{5/2} (a+a \sin (e+f x))^{2+m} \left (\frac {a+a \sin (e+f x)}{a}\right )^{\frac {1}{2}-m}\right ) \text {Subst}\left (\int \frac {\left (\frac {1}{2}+\frac {x}{2}\right )^{-\frac {1}{2}+m}}{(a-a x)^{7/2}} \, dx,x,\sin (e+f x)\right )}{a c^3 f} \\ & = \frac {2^{\frac {1}{2}+m} \operatorname {Hypergeometric2F1}\left (-\frac {5}{2},\frac {1}{2}-m,-\frac {3}{2},\frac {1}{2} (1-\sin (e+f x))\right ) \sec ^5(e+f x) (1+\sin (e+f x))^{\frac {1}{2}-m} (a+a \sin (e+f x))^{2+m}}{5 a^2 c^3 f} \\ \end{align*}

Mathematica [F]

\[ \int \frac {(3+3 \sin (e+f x))^m}{(c-c \sin (e+f x))^3} \, dx=\int \frac {(3+3 \sin (e+f x))^m}{(c-c \sin (e+f x))^3} \, dx \]

[In]

Integrate[(3 + 3*Sin[e + f*x])^m/(c - c*Sin[e + f*x])^3,x]

[Out]

Integrate[(3 + 3*Sin[e + f*x])^m/(c - c*Sin[e + f*x])^3, x]

Maple [F]

\[\int \frac {\left (a +a \sin \left (f x +e \right )\right )^{m}}{\left (c -c \sin \left (f x +e \right )\right )^{3}}d x\]

[In]

int((a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^3,x)

[Out]

int((a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^3,x)

Fricas [F]

\[ \int \frac {(3+3 \sin (e+f x))^m}{(c-c \sin (e+f x))^3} \, dx=\int { -\frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{m}}{{\left (c \sin \left (f x + e\right ) - c\right )}^{3}} \,d x } \]

[In]

integrate((a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^3,x, algorithm="fricas")

[Out]

integral(-(a*sin(f*x + e) + a)^m/(3*c^3*cos(f*x + e)^2 - 4*c^3 - (c^3*cos(f*x + e)^2 - 4*c^3)*sin(f*x + e)), x
)

Sympy [F(-1)]

Timed out. \[ \int \frac {(3+3 \sin (e+f x))^m}{(c-c \sin (e+f x))^3} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sin(f*x+e))**m/(c-c*sin(f*x+e))**3,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(3+3 \sin (e+f x))^m}{(c-c \sin (e+f x))^3} \, dx=\int { -\frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{m}}{{\left (c \sin \left (f x + e\right ) - c\right )}^{3}} \,d x } \]

[In]

integrate((a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^3,x, algorithm="maxima")

[Out]

-integrate((a*sin(f*x + e) + a)^m/(c*sin(f*x + e) - c)^3, x)

Giac [F]

\[ \int \frac {(3+3 \sin (e+f x))^m}{(c-c \sin (e+f x))^3} \, dx=\int { -\frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{m}}{{\left (c \sin \left (f x + e\right ) - c\right )}^{3}} \,d x } \]

[In]

integrate((a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^3,x, algorithm="giac")

[Out]

integrate(-(a*sin(f*x + e) + a)^m/(c*sin(f*x + e) - c)^3, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(3+3 \sin (e+f x))^m}{(c-c \sin (e+f x))^3} \, dx=\int \frac {{\left (a+a\,\sin \left (e+f\,x\right )\right )}^m}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^3} \,d x \]

[In]

int((a + a*sin(e + f*x))^m/(c - c*sin(e + f*x))^3,x)

[Out]

int((a + a*sin(e + f*x))^m/(c - c*sin(e + f*x))^3, x)